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Abstract

The origin of all 4-phase Golay sequences and Golay sequence pairs of even length at most 26
is explained. The principal techniques are the three-stage construction of Fiedler, Jedwab and
Parker [FJP08] involving multi-dimensional Golay arrays, and a “sum-difference” construction
that modifies a result due to Eliahou, Kervaire and Saffari [EKS91]. The existence of 4-phase
seed pairs of lengths 3, 5, 11, and 13 is assumed; their origin is considered in [GJ].

1 Introduction

Golay complementary sequence pairs were introduced by Golay in 1951 to solve a problem in
infrared multislit spectrometry [Gol51]. They have since found application in many other areas
of digital information processing, including optical time domain reflectometry [NNG+89], power
control for multicarrier wireless transmission [DJ99], and medical ultrasound [NSL+03]. The central
theoretical questions are:

1. For which lengths and over which alphabets does a Golay sequence pair exist?

2. For a given length and alphabet, how many Golay sequences and Golay sequence pairs are
there?

3. What structure do the known Golay sequences and Golay sequence pairs have?

In 1999, Davis and Jedwab [DJ99] demonstrated an unexpected connection between Golay
sequences and Reed-Muller codes, giving an explicit form for Hm+1m!

2 H-phase Golay sequences
of length 2m in the case H = 2h; the same explicit form holds without modification for all even
H 6= 2h [Pat00]. We refer to these H-phase Golay sequences as “standard”.

In 2008, Fiedler, Jedwab and Parker [FJP08] proposed that a Golay sequence is naturally viewed
as a projection of a multi-dimensional Golay array, and gave a three-stage process for constructing
and enumerating Golay sequence and array pairs:

1. construct suitable Golay array pairs from lower-dimensional Golay sequence or array pairs;

2. apply transformations to the constructed Golay array pairs to generate a larger set of Golay
array pairs;
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3. take projections of the resulting Golay array pairs to lower dimensions.

This three-stage construction process simplifies previous approaches, by separating the con-
struction of Golay arrays in Stage 1 from the enumeration of distinct lower-dimensional array and
sequence pairs under all possible projections in Stage 3. When trivial length 1 Golay pairs are
used as inputs to the three-stage construction, all Hm+1m!

2 standard H-phase Golay sequences of
length 2m are immediately recovered [FJP08]. If standard Golay sequence pairs are themselves
then used as inputs to the three-stage construction, nothing new is obtained.

However, if one or more non-standard Golay sequence (or array) pairs can be identified, they
can be used as additional inputs to the three-stage construction in order to yield infinite families
of non-standard Golay sequences. Currently, only two sources of non-standard input H-phase
Golay sequence pairs of length 2m are known. The first source is a set of 512 4-phase ordered
Golay sequence pairs of length 8, which arise from a “cross-over” of the autocorrelation function
of certain standard Golay sequence pairs [FJ06], [FJP08]. The second source is a set of 62,208 6-
phase ordered Golay sequence pairs of length 16 whose origin has recently been explained [FJW10]
(see also the closing comment of Section 4.4). Using these two sources as inputs to the three-stage
construction, together with trivial length 1 inputs, yields all known 2h-phase and 6-phase Golay
sequences of length 2m.

How well can the three-stage construction explain and extend known existence results for Golay
sequences whose length is not of the form 2m?

The 2-phase case. Borwein and Ferguson [BF03] determined the number of 2-phase Golay se-
quence pairs of length less than 100 by exhaustive search, and showed that all these sequences
can be constructed from 2-phase seed pairs of length 1, 10, 10, 20, and 26 [BF03], namely
(using the symbols + and − to represent sequence elements 1 and −1, respectively):

[+]
[+]

}
length 1,

[+,+,−,−,+,+,+,−,+,−]
[+,+,+,+,+,−,+,−,−,+]

}
length 10,

[+,+,−,+,−,+,−,−,+,+]
[+,+,−,+,+,+,+,+,−,−]

}
length 10,

[+,+,+,+,−,+,−,−,−,+,+,−,−,+,+,−,+,−,−,+]
[+,+,+,+,−,+,+,+,+,+,−,−,−,+,−,+,−,+,+,−]

}
length 20,

[+,+,+,+,−,+,+,−,−,+,−,+,−,+,−,−,+,−,+,+,+,−,−,+,+,+]
[+,+,+,+,−,+,+,−,−,+,−,+,+,+,+,+,−,+,−,−,−,+,+,−,−,−]

}
length 26.

(The three-stage construction reproduces the Golay sequence pair counts of [BF03], using the
same five seed pairs as inputs.) We then ask: how do the length 10, 10, 20, and 26 seed pairs
arise? Eliahou, Kervaire and Saffari [EKS91] showed that all 2-phase Golay sequence pairs
can be interpreted as arising from shorter ternary Golay sequence pairs (see Section 3.2),
and in particular both of the length 10 seed pairs can be derived from a simple length 3
ternary Golay sequence pair. However, in the case of the length 20 and 26 seed pairs, it is
not obvious how the corresponding ternary Golay sequence pairs themselves arise. A more
complete explanation of the origin of the length 26 seed pair is that it can be derived from
a length 13 Barker sequence and a related length 11 Barker sequence [JP09]; a satisfactory
explanation of the origin of the length 20 seed pair has yet to be found.

The 4-phase case. The 4-phase case is the topic of this paper and a companion paper [GJ].
Exhaustive search results for 4-phase Golay sequences and Golay sequence pairs for lengths
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s ≤ 26 are shown in Table 1, as kindly supplied by F. Fiedler [Fie]. Counts of 4-phase Golay
sequence pairs were previously found by computer search for lengths s ≤ 13 in 1994 [HK94],
and updated to lengths s ≤ 19 and s = 21 in 2002 [CHK02]; although the 4-phase Golay
sequence pairs so found were classified into equivalence classes of size at most 1024, the
origin of these equivalence classes was not explained. In this paper we shall use the three-
stage construction, together with a “sum-difference” construction, to explain completely the
sequence and pair counts of Table 1 for even lengths not of the form 2m. Our explanation will
assume 4-phase seed pairs of lengths 3, 5, 11, and 13 are given; the origin of these 4-phase
seed pairs is considered in [GJ]. With the exception of lengths 2 and 8, each ordered pair
count in Table 1 is 8 times the corresponding sequence count. Therefore it will be sufficient, in
Section 4.3 and part of Section 4.4 (not involving length 2 or 8), to explain just the sequence
count, and to show that the number of ordered Golay sequence pairs is at least 8 times as
large.

Length # sequences # ordered
sequence pairs

2 16 64
3 16 128
4 64 512
5 64 512
6 256 2,048
7 0 0
8 768 6,656
9 0 0

10 1,536 12,288
11 64 512
12 4,608 36,864
13 64 512
14 0 0
15 0 0
16 13,312 106,496
17 0 0
18 3,072 24,576
19 0 0
20 26,880 215,040
21 0 0
22 1,024 8,192
23 0 0
24 98,304 786,432
25 0 0
26 1,280 10,240

Table 1: Total number of 4-phase Golay sequences and ordered Golay sequence pairs, as found by
exhaustive search [Fie].
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2 Definitions and notation

We define a length s sequence to be a 1-dimensional matrix A = (A[j]) of complex-valued entries,
where j is an integer, for which

A[j] = 0 if j < 0 or j ≥ s.

Call the set of sequence elements
{A[j] | 0 ≤ j < s}

the in-range entries of A.
Usually the in-range entries of A are constrained to lie in a small finite set S called the sequence

alphabet. Let ξ be a primitive H-th root of unity for some H, where H represents an even integer
throughout. If S = {1, ξ, ξ2, . . . , ξH−1} then A is an H-phase sequence. Special cases of interest
are the binary case H = 2, for which S = {1,−1}, and the quaternary case H = 4, for which
S = {1, i,−1,−i} (where i represents

√
−1 throughout). If S = ZH then A is a sequence over ZH .

The in-range entries of an H-phase sequence A = (A[j]) of length s can be represented in the form

ξa[j] := A[j], where each a[j] ∈ ZH . (1)

We call the length s sequence (a[j]) given by (1) the sequence over ZH corresponding to A. (Here
and elsewhere, in defining the elements of a sequence of a given length, the definition implicitly
applies only to the in-range entries.) We will use lower-case letters for sequences over ZH (“additive
notation”), and upper-case letters for complex-valued sequences (“multiplicative notation”); the
same letter (for example a and A) will indicate corresponding sequences. We will switch between
additive and multiplicative notation, according to convenience. If a 2-phase alphabet is enlarged
to allow zero elements, so that S = {0, 1,−1}, then we call A a ternary sequence.

The aperiodic autocorrelation function of a length s complex-valued sequence A = (A[j]) is
given by

CA(u) :=
∑

j

A[j]A[j + u] for integer u,

where bar represents complex conjugation. The aperiodic autocorrelation function of a sequence
over ZH is that of the corresponding H-phase sequence. A length s Golay sequence pair is a pair
of length s sequences A and B for which

CA(u) + CB(u) = 0 for all u 6= 0.

A sequence A is called a Golay sequence if it forms a Golay sequence pair with some sequence B.
For example, A = (A[j]) = [1, 1, 1, −i, i] is a 4-phase length 5 Golay sequence. It satisfies

(CA(u) | 0 ≤ u < 5) = (5, 1 + i, 1, 0, −i),

and forms a 4-phase length 5 Golay pair with the sequence B = (B[j]) = [1, i, −1, 1, −i] that
satisfies

(CB(u) | 0 ≤ u < 5) = (5, −1− i, −1, 0, i).

The corresponding Golay sequence pair over Z4 is (a[j]) = [0, 0, 0, 3, 1] and (b[j]) = [0, 1, 2, 0, 3].
Given a complex-valued length s sequence A = (A[j]) and complex constant D, define the

reverse conjugation A∗ = (A∗[j]) of A to be the length s sequence given by

A∗[j] := A[s− 1− j] for all j

(with corresponding sequence (a∗[j]) = (−a[s−1− j]) over ZH if A is H-phase), and DA to be the
length s sequence (DA[j]). The following result is a straightforward consequence of the definitions:
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Lemma 1. Let A be a complex-valued sequence and let D be a complex constant. Then the
sequences A and A∗ have identical aperiodic autocorrelation function, and

CDA(u) = |D|2CA(u) for all u.

Given an H-phase sequence A and a primitive H-th root of unity ξ, it follows from Lemma 1 that
the elements of the set

E(A) := {ξcA | c ∈ ZH} ∪ {ξcA∗ | c ∈ ZH} (2)

of H-phase sequences (which has order H if A∗ = ξcA for some c ∈ ZH , and order 2H otherwise)
all have identical aperiodic autocorrelation function.

We generalise the definition of a Golay sequence pair to multiple dimensions as follows. An
s1× · · · × sr array is an r-dimensional matrix A = (A[j1, . . . , jr]) of complex-valued entries, where
j1, . . . , jr are integers, for which

A[j1, . . . , jr] = 0 if, for any k ∈ {1, . . . , r}, jk < 0 or jk ≥ sk.

The in-range entries of A are the array elements

{A[j1, . . . , jr] | 0 ≤ jk < sk for all k}.

H-phase arrays, arrays over ZH , the array over ZH corresponding to an H-phase array, and binary,
ternary, and quaternary arrays, are all defined in an analogous way as for sequences. The aperiodic
autocorrelation function of an s1 × · · · × sr complex-valued array A = (A[j1, . . . , jr]) is

CA(u1, . . . , ur) :=
∑
j1

. . .
∑
jr

A[j1, . . . , jr]A[j1 + u1, . . . , jr + ur] for integers u1, . . . , ur,

and the aperiodic autocorrelation function of an array over ZH is that of the corresponding H-phase
array. An s1 × · · · × sr Golay array pair is a pair of s1 × · · · × sr arrays A and B for which

CA(u1, . . . , ur) + CB(u1, . . . , ur) = 0 for all (u1, . . . , ur) 6= (0, . . . , 0),

and an array A is called a Golay array if it forms a Golay array pair with some array B. Given a
complex-valued s1×· · ·×sr array A = (A[j1, . . . , jr]), the s1×· · ·×sr array A∗ = (A∗[j1, . . . , jr]) =
(A[s1− 1− j1, . . . , sr − 1− jr]) has identical aperiodic autocorrelation function to A. For example,

the 3× 2 array A =

 0 2
1 2
0 0

 over Z4 forms a Golay array pair with the array B =

 2 0
0 3
0 0

 over

Z4, and also with B∗ =

 0 0
1 0
0 2

.

Given an s1 × · · · × sr complex-valued array A = (A[j1, . . . , jr]) with r ≥ 2, the projection
ψ1,2(A) of A is the s1s2 × s3 × · · · × sr array (B[j, j3, . . . , jr]) given by

B[j1 + s1j2, j3, . . . , jr] := A[j1, . . . , jr] for all (j1, . . . , jr).

For distinct k, ` ∈ {1, . . . , r}, the array ψk,`(A) is defined similarly by removing the array argu-
ment jk and replacing the array argument j` by jk + skj`; we say that the mapping ψk,` joins
index k to index `. We can interpret the action of the mapping ψk,` on an array as replacing
the sk × s` “slice” of the array formed from dimensions k and ` by the sequence obtained when
the elements of the slice are listed column by column. The definition of ψk,`(A) holds without

5



modification for an array over ZH . For example, let A be the 3× 2 array

 0 2
1 2
0 0

 over Z4. Then

the projection ψ1,2(A) = [0, 1, 0, 2, 2, 0] is obtained by reading off the columns of A in turn, and
the projection ψ2,1(A) = [0, 2, 1, 2, 0, 0] is obtained by reading off the rows of A in turn. We shall
see in Theorem 4 that a projection mapping preserves the Golay array property.

We use a directed graph to represent the effect of successive projection mappings on a given
r-dimensional array. Each array index is represented by a vertex 1, . . . , r, and each projection
mapping is represented by an arc. The graph representing the successive application of j projection
mappings comprises a set of disjoint directed paths, each representing a set of joined indices; the
total length of all paths is j. Applying a further projection mapping joins the final vertex of the
path representing a first set of joined indices to the initial vertex of the path representing a second
set of joined indices. The projected array corresponding to such a graph does not depend on the
order in which arcs are added [FJP08, Proposition 2]. For example, the sequence obtained by
applying r − 1 successive projection mappings to an r-dimensional array is completely described
by a directed path of the form

σ(1)
• −→

σ(2)
• −→ · · · −→

σ(r)
•

for some permutation σ of {1, . . . , r}.

3 Two construction methods for Golay sequence pairs

In this section, we describe two construction methods that will be used to explain the Golay
sequence and pair counts of Table 1.

3.1 Three-stage construction

The first construction method, introduced by Fiedler, Jedwab and Parker [FJP08] using additive
notation, comprises three stages and involves multi-dimensional Golay arrays. We require only the
special case stated here, in which all inputs to Stage 1 and all outputs from Stage 3 are Golay
sequence pairs (rather than the more general case of Golay array pairs).

Stage 1 . Construct a (2m + 1)-dimensional Golay array over ZH from m + 1 Golay sequence
pairs over ZH :

Theorem 2 ([FJP08, Theorem 7]). Let m ≥ 1 be an integer. Suppose that (ak[jk]) and
(bk[jk]) form a Golay sequence pair of length sk over ZH , for k = 0, 1, . . . ,m. Then the arrays
(fm[j0, . . . , jm, x1, . . . , xm]) and (gm[j0, . . . , jm, x1, . . . , xm]) of size s0× · · · × sm× 2× · · · × 2
(in which m copies of 2 appear) over ZH given by

fm[j0, . . . , jm, x1, . . . , xm] :=
m−1∑
k=1

(
ak[jk] + a∗k[jk]− bk[jk]− b∗k[jk] +

H

2

)
xkxk+1 +

m∑
k=1

(
b∗k−1[jk−1] + bk[jk]− ak−1[jk−1]− ak[jk]

)
xk +

m∑
k=0

ak[jk],

gm[j0, . . . , jm, x1, . . . , xm] := f ′m[j0, . . . , jm, x1, . . . , xm] +
H

2
x1,

form a Golay array pair, where f ′m[j0, . . . , jm, x1, . . . , xm] is fm[j0, . . . , jm, x1, . . . , xm] with
a0[j0], b0[j0] interchanged and with a∗0[j0], b∗0[j0] interchanged.
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For example, define ordered Golay sequence pairs

(a0[j0], b0[j0]) = ([2, 0, 0], [0, 1, 0]),
(a1[j1], b1[j1]) = ([0], [0]),
(a2[j2], b2[j2]) = ([3, 1, 1], [0, 3, 0])

over Z4. Apply Theorem 2 with m = 2 and H = 4 to produce a 3 × 1 × 3 × 2 × 2 Golay
array pair over Z4. The dimension equalling 1 (indexed by j1) can be removed to simplify
notation, leaving a 3× 3× 2× 2 Golay array pair (f2[j0, j2, x1, x2], g2[j0, j2, x1, x2]) given by

(f2[j0, j2, x1, x2]) =



 1 3 3
3 1 1
3 1 1


(x1,x2)=(0,0)
(a0[j0]+a2[j2])

 2 1 2
0 3 0
0 3 0


(x1,x2)=(0,1)
(a0[j0]+b2[j2]) 3 1 1

2 0 0
3 1 1


(x1,x2)=(1,0)
(b∗0[j0]+a2[j2])

 2 1 2
1 0 1
2 1 2


(x1,x2)=(1,1)

(b∗0[j0]+b2[j2]+2)


,

(g2[j0, j2, x1, x2]) =



 3 1 1
0 2 2
3 1 1


(x1,x2)=(0,0)
(b0[j0]+a2[j2])

 0 3 0
1 0 1
0 3 0


(x1,x2)=(0,1)
(b0[j0]+b2[j2]) 1 3 3

1 3 3
3 1 1


(x1,x2)=(1,0)

(a∗0[j0]+a2[j2]+2)

 0 3 0
0 3 0
2 1 2


(x1,x2)=(1,1)
(a∗0[j0]+b2[j2])


,

where the vertical and horizontal direction of each 3 × 3 subarray corresponds to the array
indices j0 and j2 respectively. If desired, the remaining array indices (j0, j2) can now be
relabelled (j1, j2).

Stage 2 . Take “affine offsets” of the Golay array pairs created in Stage 1, to generate a larger
set of Golay array pairs of the same size:

Lemma 3 ([FJP08, Lemma 8]). Suppose that ((a[j1, . . . , jr]), (b[j1, . . . , jr])) is an s1×· · ·×sr

Golay array pair over ZH . Then the affine offset((
a[j1 . . . , jr] +

r∑
k=1

ekjk + e0

)
,

(
b[j1 . . . , jr] +

r∑
k=1

ekjk + e′0

))

is also an s1 × · · · × sr Golay array pair over ZH , for all e′0, e0, e1, . . . , er ∈ ZH .

Stage 3 . Repeatedly take projections of the Golay array pairs from Stage 2, each time reducing
the dimension by 1, until the resulting Golay array pair has dimension 1 and is therefore a
sequence:

Theorem 4 ([JP07, Theorem 11]). Suppose that A and B form an r-dimensional Golay
array pair over an alphabet S, with r ≥ 2. Then, for distinct k, ` ∈ {1, ..., r}, ψk,`(A) and
ψk,`(B) form an (r − 1)-dimensional Golay array pair over S.

Theorem 4 was given for the case (k, `) = (1, 2) in [JP07]; the form given here follows simply
by reordering dimensions.
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3.2 Sum-difference construction

The second construction method, for which we shall switch to multiplicative notation, modifies
a result used by Eliahou, Kervaire and Saffari [EKS91] to explain the origin of 2-phase Golay
sequence pairs in terms of shorter ternary Golay sequence pairs. Given complex-valued sequences
A = (A[j]) and B = (B[j]) of equal length, write A+B := (A[j]+B[j]) and A−B := (A[j]−B[j]).
We begin with the “folklore” result:

Lemma 5. Suppose that sequences A and B of equal length form a complex-valued Golay sequence
pair. Then A+ B and A− B also form a Golay sequence pair of the same length.

Proof. This is an immediate consequence of the identity

CA+B(u) + CA−B(u) ≡ 2(CA(u) + CB(u)).

We also require a classical observation due to Golay [Gol61], which constrains “quads” of elements
of a 2-phase Golay sequence pair:

Proposition 6 ([Gol61, General Property 6]). Let (A[j]) and (B[j])) form a 2-phase Golay se-
quence pair of length s. Then

A[j] +A∗[j] +B[j] +B∗[j] ≡ 2 (mod 4) for 0 ≤ j < s. (3)

Proof. We have

CA(u) + CB(u) =
s−1−u∑

j=0

(A[j]A[j + u] +B[j]B[j + u])

≡
s−1−u∑

j=0

(A[j] +A[j + u]− 1 +B[j] +B[j + u]− 1) (mod 4)

since, for X,Y ∈ {1,−1}, we have XY ≡ X + Y − 1 (mod 4). Since (A,B) is a Golay pair, we
then obtain

2(s− u) ≡
s−1−u∑

j=0

(A[j] +A[j + u] +B[j] +B[j + u]) (mod 4) for 0 < u < s. (4)

Substitute u = s − 1 in (4) to give the cases j = 0 and j = s − 1 of (3). For u < s − 1, replace u
by u+ 1 in (4) to give

2(s− u− 1) ≡
s−2−u∑

j=0

(A[j] +A[j + u+ 1] +B[j] +B[j + u+ 1]) (mod 4) for 0 < u < s− 1.

Subtract this from (4) to give

2 ≡ A[s− 1− u] +A[u] +B[s− 1− u] +B[u] (mod 4) for 0 < u < s− 1,

and replace u by j to give the remaining cases of (3).
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In general, the alphabet of the output sequences A + B and A − B of Lemma 5 is not the same
as that of the input sequences A and B, and we have little control over the output alphabet when
Lemma 5 is applied. However, Eliahou, Kervaire and Saffari showed how to transform a 2-phase
Golay sequence pair into a ternary Golay sequence pair, by combining reverse conjugation with
two successive applications of Lemma 5:

Proposition 7 ([EKS91, Section 2]). Let (X3,Y3) be a 2-phase Golay sequence pair, and define

X2 := 1
2(X3 + Y3) and Y2 := 1

2(X ∗3 − Y∗3 ), (5)

X1 := 1
2(X2 + Y2) and Y1 := 1

2(X2 − Y2). (6)

Then (X1,Y1) is a ternary Golay sequence pair.

Proof. Since (X3,Y3) is a Golay sequence pair, by Lemma 5 the sequence X3 + Y3 forms a Golay
sequence pair with X3 − Y3 and therefore, by Lemma 1, with (X3 − Y3)∗ ≡ X ∗3 − Y∗3 . It follows
from Lemma 1 with D = 1

2 that (X2,Y2) is a Golay sequence pair. Similarly, by Lemmas 1 and 5,
(X1,Y1) is a Golay sequence pair.

It remains to show that X1 and Y1 are ternary sequences. Write X3 = (X3[j]) and Y3 = (Y3[j]),
and fix j in the range 0 ≤ j < s, where s is the length of the Golay pair (X3,Y3). Apply
Proposition 6 to (X3,Y3) to show that the multiset {X3[j], X∗3 [j], Y3[j], Y ∗3 [j]} is either {1, 1, 1,−1}
or {−1,−1,−1, 1}. This implies that

either X2[j] = Y2[j] = 0 and X ∗2 [j],Y∗2 [j] ∈ {1,−1},
or X2[j],Y2[j] ∈ {1,−1} and X ∗2 [j] = Y∗2 [j] = 0.

Therefore

the multiset {X1[j],Y1[j],X ∗1 [j],Y∗1 [j]} is either {0, 0, 0, 1} or {0, 0, 0,−1}, (7)

and so X1 and Y1 are ternary sequences.

For example, take (X3,Y3) to be the 2-phase length 20 Golay seed pair (see Section 1). Then the
construction of Proposition 7 gives

X3 = [ +, +, +, +, −, +, −, −, −, +, +, −, −, +, +, −, +, −, −, + ]
Y3 = [ +, +, +, +, −, +, +, +, +, +, −, −, −, +, −, +, −, +, +, − ],

X2 = [ +, +, +, +, −, +, 0, 0, 0, +, 0, −, −, +, 0, 0, 0, 0, 0, 0 ]
Y2 = [ +, −, −, +, −, +, 0, 0, 0, +, 0, −, −, −, 0, 0, 0, 0, 0, 0 ],

X1 = [ +, 0, 0, +, −, +, 0, 0, 0, +, 0, −, −, 0, 0, 0, 0, 0, 0, 0 ]
Y1 = [ 0, +, +, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +, 0, 0, 0, 0, 0, 0 ],

and (X1,Y1) is a ternary Golay sequence pair of length 20 (although 6 trailing zeroes can be
removed from both sequences of the pair to reduce the length to 14). We can use Proposition 7
in this way to explain the origin of each of the 2-phase length 10, 10, 20, and 26 Golay seed pairs
in terms of shorter ternary Golay sequence pairs; the origin of the ternary pairs themselves then
requires explanation (see Section 1).

Moreover, the construction of Proposition 7 can be reversed to generate the 2-phase Golay
sequence pair (X3,Y3) from the ternary Golay sequence pair (X1,Y1) via

X2 = X1 + Y1 and Y2 = X1 − Y1,

X3 = X2 + Y∗2 and Y3 = X2 − Y∗2 .

We now regard these equations as the special case C = D = 1 of the following construction:
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Proposition 8. Let (X1,Y1) be the ternary Golay sequence pair derived from a 2-phase Golay
sequence pair (X3,Y3) of length s via (5) and (6), and let C,D ∈ {1, ξ, ξ2, . . . , ξH−1} (where ξ is a
primitive H-th root of unity for some even integer H). Define

U2 := X1 + CY1 and V2 := X1 − CY1,

U3 := U2 +DV∗2 and V3 := U2 −DV∗2 .

Then (U3,V3) is an H-phase Golay sequence pair of length s.

Proof. Since (X1,Y1) is a Golay sequence pair, by Lemma 1 so is (X1, CY1). Therefore (U2,V2) is
a Golay sequence pair, by Lemma 5. Similarly, by Lemmas 1 and 5, (U3,V3) is a Golay sequence
pair.

It remains to show that U3 and V3 are H-phase sequences. Write S = {1, ξ, ξ2, . . . , ξH−1}, and
fix j in the range 0 ≤ j < s. Since the conditions of Proposition 7 are satisfied, we can use (7). By
definition of U2 and V2, it follows that

either U2[j] = V2[j] = 0 and U∗2 [j],V∗2 [j] ∈ S,
or U2[j],V2[j] ∈ S and U∗2 [j] = V∗2 [j] = 0.

Then by definition of U3 and V3 we have

U3[j], V3[j], U∗3 [j], V∗3 [j] ∈ S,

as required.

For example, take (X3,Y3) once again to be the 2-phase length 20 Golay seed pair. The case C = i
and D = 1 of Proposition 8 then gives

U2 = [ +, i, i, +, −, +, 0, 0, 0, +, 0, −, −, i, 0, 0, 0, 0, 0, 0 ]
V2 = [ +, −i, −i, +, −, +, 0, 0, 0, +, 0, −, −, −i, 0, 0, 0, 0, 0, 0 ],

U3 = [ +, i, i, +, −, +, i, −, −, +, +, −, −, i, +, −, +, i, i, + ]
V3 = [ +, i, i, +, −, +, −i, +, +, +, −, −, −, i, −, +, −, −i, −i, − ],

and (U3,V3) is a 4-phase Golay sequence pair of length 20.
A variation of the method of Proposition 8 was recently used [FJW10] to explain the origin

of 62,208 non-standard 6-phase ordered Golay sequence pairs of length 16 from a single length 5
Golay sequence pair.

4 Explanation of even length sequence and pair counts in Table 1

In this section, we use the construction theorems of Section 3 to explain completely the even-
length Golay sequence and pair counts of Table 1. Results from Sections 4.2–4.4 are summarised
in Table 2.

4.1 Lengths of the form 2m

The 4-phase Golay sequence and pair counts for lengths 2, 4, 8, and 16 have already been com-
pletely accounted for [FJ06], [FJP08]. The length 2 counts are anomalous, but can easily be
derived directly. For m > 1, there are 22m+1m! standard 4-phase Golay sequences of length 2m

forming at least 22m+4m! ordered Golay sequence pairs. For length 8, there are 512 additional
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“cross-over” Golay sequence pairs that arise as a result of the standard 4-phase Golay sequences
A = [1, 1, 1, −1, 1, 1, −1, 1] and A′ = [1, i, −i, 1, 1, −i, i, 1] sharing the same aperiodic autocor-
relation function, even though E(A) 6= E(A′) (the definition of E(A) is given in (2)). For length 16,
these length 8 cross-over pairs give rise to 1,024 additional Golay sequences and 8,192 additional
Golay pairs.

4.2 Seed pairs

Let s ∈ {3, 5, 11, 13}. We will assume the following Golay sequence pair (As,Bs) = (as[j], bs[j]) of
length s over Z4 is given; its origin will be considered in [GJ]:

A3 = [0, 0, 2]
B3 = [0, 1, 0]

}
,

A5 = [0, 0, 0, 3, 1]
B5 = [0, 1, 2, 0, 3]

}
,

A11 = [0, 0, 0, 1, 2, 0, 1, 3, 1, 0, 2]
B11 = [0, 1, 2, 2, 2, 1, 1, 0, 3, 1, 0]

}
,

A13 = [0, 0, 0, 1, 2, 0, 0, 3, 0, 2, 0, 3, 1]
B13 = [0, 1, 2, 2, 2, 1, 2, 0, 0, 3, 2, 0, 3]

}
.

We use the seed pair (As,Bs) to define the set of ordered sequence pairs

Ps :=


{

(As,Bs), (Bs,As)
}

for s = 3,{
(As,Bs), (As,B∗s), (A∗s,Bs), (A∗s,B∗s),
(Bs,As), (Bs,A∗s), (B∗s ,As), (B∗s ,A∗s)

}
for s = 5, 11, 13.

(8)

By Lemmas 1 and 3, each affine offset of each element of Ps is a Golay sequence pair of length s
over Z4, and by definition of Ps all these pairs are distinct. (The reason for defining P3 to have
only two elements is to ensure this procedure gives distinct pairs, since A∗3 = (a3[j] + 2j + 2)
and B∗3 = (b3[j] + 2j) are affine offsets of A3 and B3, respectively.) This accounts for all |Ps| · 43

Golay sequence pairs of length s counted in Table 1. The corresponding number of distinct Golay
sequences is 4 · 42 for s ∈ {5, 11, 13}, where the factor of 4 represents a choice from the set
{As,A∗s,Bs,B∗s} and the factor of 42 arises from distinct affine offsets. The count is only 1 · 42 for
s = 3, because A∗3 = (a3[j] + 2j + 2), B3 = (a3[j] + j), and B∗3 = (a3[j] + 3j) are all affine offsets
of A3.

This explains all Golay sequence and pair counts in Table 1 for lengths 3, 5, 11, and 13.

4.3 Three-stage construction

Let s ∈ {3, 5, 11, 13}. We now use the elements of the set Ps as input pairs to the three-stage
construction, in order to explain the Golay sequence and pair counts of Table 1 for lengths of the
form sc · 2m.

Proposition 9. Let m and c be integers satisfying m ≥ 1 and 1 ≤ c ≤ m + 1, and let s ∈
{3, 5, 11, 13}. The number of Golay sequences of length sc · 2m over Z4 that can be derived from
affine offsets and projection mappings, after taking c of the m+ 1 input array pairs in Theorem 2
to be from the set Ps and the remaining m+ 1− c input array pairs to be trivial, is

22m+3c+1

(
m+ 1
c

)
(m+ c)! for s = 3

22m+5c+1

(
m+ 1
c

)
(m+ c)! for s ∈ {5, 11, 13},
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and the corresponding number of ordered Golay sequence pairs is at least 8 times this number.

Proof. Let S be the multiset of Golay sequences produced by the three-stage construction as the
input sequence pairs, affine offsets, and projection mappings each run through all allowed values.
We firstly determine the size of S.

Stage 1 . Choose c of the m+1 input pairs (a0, b0), . . . , (am, bm) in Theorem 2 to belong to Ps, and
for each of these c pairs choose one of |Ps| possible values. Under these choices, Theorem 2
outputs

(
m+1

c

)
|Ps|c Golay array pairs(

(f [j1, . . . , jc, x1, . . . , xm]), (g[j1, . . . , jc, x1, . . . , xm])
)

(9)

over Z4 of size s × · · · × s × 2 × · · · × 2 (where c copies of s and m copies of 2 appear;
dimensions equalling 1 have been removed, and the remaining array indices from j0, . . . jm
have been relabelled as j1, . . . , jc).

Stage 2 . For each array pair (9), choose affine offset variables e′0, . . . , e
′
c, e0, . . . , em ∈ Z4 in

Lemma 3 to give a Golay array pair ((f̂ [j1, . . . , jc, x1, . . . , xm]), (ĝ[j1, . . . , jc, x1, . . . , xm])),
where

f̂ [j1, . . . , jc, x1, . . . , xm] := f [j1, . . . , jc, x1, . . . , xm] +
c∑

k=1

e′kjk +
m∑

k=1

ekxk + e0,

ĝ[j1, . . . , jc, x1, . . . , xm] := g[j1, . . . , jc, x1, . . . , xm] +
c∑

k=1

e′kjk +
m∑

k=1

ekxk + e′0

 (10)

for all (j1, . . . , jc, x1, . . . , xm) ∈ Zc
s × Zm

2 .

For each array f [j1, . . . , jc, x1, . . . , xm], there are 4m+c+1 affine offsets arising from the choice
of constants e′1, . . . , e

′
c, e0, . . . , em.

Stage 3 . For each (m + c)-dimensional array pair (10), choose a path of length m + c − 1 in a
directed graph G on m + c vertices labelled j1, . . . , jc, x1, . . . , xm. There are (m + c)! such
graphs G, each representing a different Golay sequence pair of length sc · 2m obtained under
m+ c− 1 successive projection mappings of the array pair (10) (see Section 2).

In summary, each element of S is determined by a triple

(((a0, b0), . . . , (am, bm)), (e′1, . . . , e
′
c, e0, e1, . . . , em), G), (11)

and the size of S is given by

|S| =
(
m+ 1
c

)
|Ps|c4m+c+1(m+ c)!.

(The sequences A∗3 = (a3[j] + 2j + 2) and B∗3 = (b3[j] + 2j) are affine offsets of A3 and B3,
respectively. It is therefore sufficient to define P3 to have two elements, as in (8), because the effect
of applying affine offsets to pairs from P3 prior to input into Theorem 2 is completely described by
applying affine offsets to pairs after output [Gib08, Appendix A].)

We claim that the multiplicity of each sequence in S is 2, so that the number of distinct Golay
sequences produced by the three-stage construction is |S|/2, which by (8) is as required. To show
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that the multiplicity is at least 2, fix a triple of the form (11). Algebraic manipulation of the
expression for fm in Theorem 2 shows that f [j1, . . . , jc, x1, . . . , xm] is invariant under the mapping

(ak, bk) 7→ (am−k, b
∗
m−k) for 0 ≤ k ≤ m;

jk 7→ jc+1−k for 1 ≤ k ≤ c;
xk 7→ xm+1−k for 1 ≤ k ≤ m


(where the given mapping of the relabelled array indices j1, . . . , jc is equivalent to the mapping
“jk 7→ jm−k for 0 ≤ k ≤ m” for the original array indices j0, . . . , jm). It follows from (10) that
f̂ [j1, . . . , jc, x1, . . . , xm] is invariant under the mapping

(ak, bk) 7→ (am−k, b
∗
m−k) for 0 ≤ k ≤ m;

jk 7→ jc+1−k and e′k 7→ e′c+1−k for 1 ≤ k ≤ c;
xk 7→ xm+1−k and ek 7→ em+1−k for 1 ≤ k ≤ m.

 (12)

This mapping relabels the vertices j1, . . . , jc, x1, . . . , xm of G to give a graph G′ that is distinct
from G (since G is a directed Hamiltonian path). Therefore the triple

(((am, b
∗
m), . . . , (a0, b

∗
0)), (e′c, . . . , e

′
1, e0, em, . . . , e1), G′)

is distinct from the triple (11), but gives rise to the same projected sequence in S, and so the
multiplicity of each sequence in S is at least 2. The multiplicity is exactly 2, because two projected
sequences in S are identical only if their unprojected (m + c)-dimensional arrays are identical
[FJP08, Proposition 2], and the only non-identity mapping of the jk, xk, ek, and e′k under which
f̂ [j1, . . . , jc, x1, . . . , xm] is invariant is as contained in (12). This establishes the claim.

It remains to find a lower bound on the number of sequences forming a Golay pair with a given
projected sequence. Fix an array f̂ [j1, . . . , jc, x1, . . . , xm] as in (10). There are 4 choices of the
constant e′0 for the array ĝ[j1, . . . , jc, x1, . . . , xm] in (10). Furthermore, f̂ [j1, . . . , jc, x1, . . . , xm] is
invariant under the mapping (12), but ĝ[j1, . . . , jc, x1, . . . , xm] maps to ĝ[j1, . . . , jc, x1, . . . , xm] +
(a∗m + am − b∗m − bm)xm + (b∗0 + b0 − a∗0 − a0)x1 + (a0 − am − b0 + b∗m) + 2(x1 + xm), which
is distinct from ĝ[j1, . . . , jc, x1, . . . , xm] for any e′0 ∈ Z4 (otherwise we would have m = 1 and
a0 = b0 = a1 = b1 = [0], but by assumption c ≥ 1). Therefore each array f̂ [j1, . . . , jc, x1, . . . , xm]
forms a Golay pair with at least 8 other arrays. By applying the same sequence of projection
mappings to both arrays of any such pair, each projected sequence forms a Golay pair with at least
8 other sequences, as required.

Sequence counts arising from Proposition 9 for small values of c and m are displayed in Table 2.
(As noted in Section 1, it is sufficient that Proposition 9 guarantees at least 8 times as many Golay
sequence pairs.) This explains all the sequence counts in Table 1, except for lengths 10, 20, and 26.
In these cases, additional Golay sequences can be constructed as described in the next section.

4.4 Sum-difference construction

Let (X3,Y3) be one of the non-trivial 2-phase Golay seed pairs listed in Section 1 (having length 10,
10, 20, or 26). Take C,D ∈ {1, i} in Proposition 8 to produce 22 distinct 4-phase Golay sequence
pairs of the same length. For each corresponding sequence pair (A,B) over Z4, let P be the set of
ordered sequence pairs

P :=
{

(A,B), (A,B∗), (A∗,B), (A∗,B∗), (B,A), (B,A∗), (B∗,A), (B∗,A∗)
}
.
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By Lemmas 1 and 3, each affine offset of each element of P is a Golay sequence pair of the same
length over Z4. By definition of P , all these pairs are distinct from each other; direct checking shows
they also are distinct from those constructed in Section 4.3. (We could apply Proposition 8 with a
larger set of constants C,D ∈ {1, i,−1,−i}, but doing so will not produce any additional sequence
pairs once affine offsets are taken into account.) This constructs an additional 22 · |P | · 43 = 2048
Golay sequence pairs at each of lengths 10, 10, 20, and 26. The corresponding number of distinct
Golay sequences in each case is 22 · 4 · 42 = 256, where the factor 4 represents a choice from the set
{A,A∗,B,B∗} and the factor 42 arises from distinct affine offsets.

This explains all remaining Golay sequence and pair counts in Table 1, except for 8, 192 Golay
sequences of length 20 and at least 8 times as many Golay pairs. To complete the explanation we
use additional length 10 Golay sequence pairs, as constructed using Proposition 8, as inputs to the
three-stage construction. Take m = 1 in Theorem 2, choosing one of the 2 input pairs to be trivial,
and the other to be one of the 2 · 22 · |P | = 64 additional length 10 pairs that are inequivalent
under affine offsets. Following the argument of Section 4.3, we obtain 2 · 64 · 43 · 2!/2 = 8, 192
further 4-phase length 20 Golay sequences and at least 8 times as many Golay pairs, as required.
The factor of 2 arises from the choice of which of the 2 input pairs has length 10; the factor of
64 from the number of inequivalent length 10 input pairs; the factor of 43 from affine offsets of a
2-dimensional array; the factor of 2! from the number of projections of a 2-dimensional array to a
sequence; and division by 2 because the multiplicity of each constructed sequence is 2.

Sequence Section 4.2 Proposition 9 Section 4.4 Total
length # sequences s, c, m # sequences # sequences # sequences

3 16 16
6 3, 1, 1 256 256

12 3, 1, 2 4,608 4,608
24 3, 1, 3 98,304 98,304
18 3, 2, 1 3,072 3,072
5 64 64

10 5, 1, 1 1,024 2 · 256 1,536
20 5, 1, 2 18,432 256 + 8,192 26,880
11 64 64
22 11, 1, 1 1,024 1,024
13 64 64
26 13, 1, 1 1,024 256 1,280

Table 2: Number of 4-phase Golay sequences of small lengths counted in Section 4.2, Proposition 9,
and Section 4.4. The number of ordered Golay sequence pairs is at least 8 times this number.

5 Comments

We have explained the origin of all 4-phase Golay sequences and Golay sequence pairs of even
length at most 26. The three-stage construction can also be used to derive minimum counts for
4-phase Golay sequences and sequence pairs of length greater than 26, although a more general
result than Proposition 9 is needed for some lengths. For example, length 30 can be achieved by
using a length 3 and length 5 pair as inputs to Theorem 2, and length 48 can be achieved by using
a length 3 and cross-over length 8 pair as inputs to Theorem 2.

The origin of the 4-phase seed pairs of lengths 3, 5, 11, and 13 is considered in [GJ].
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